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This paper describes laboratory experiments on the flow over a three-dimensional hill 
in a rotating fluid. The experiments were carried out in towing tanks, placed on 
rotating tables. Rotation is found to have a strong influence on the separation behind 
the hill. The topology of the separation is found to be the same for all the flows 
examined. The Rossby number R in the experiments is of order 1,  the maximum 
value being 6. The separated flow is dominated by a single trailing vortex. In  the 
majority of cases the surface stress field has a single separation line and there are no 
singular points. I n  a few experiments at the highest Rossby numbers the observations 
suggest more complex stress fields but the results are inconclusive. 

A criterion for flow separation is sought. For values of DII ,  > 1, where D is the 
depth of the flow and L the lengthscale of the hill, separation is found to  be primarily 
dependent on R. At sufficiently small values of R separation is suppressed and the 
flow remains fully attached. 

Linear theory is found to  give a good estimate for the critical value of R for flow 
separation. For hills with a moderate slope (slope < 1)  this critical value is around 1,  
decreasing with increasing slope. It is postulated that the existence of a single 
dominant trailing vortex is due to  the uplifting and subsequent turning of transverse 
vorticity generated by surface pressure forces upstream of the separation line. 

1. Introduction 
Topography has a large influence on atmospheric and oceanic flows on all scales. 

Not only does topography exert a form drag on the flow but in many cases a wave 
drag due to the radiation of internal and/or inertial waves also exists (see Mason 1979 
for a discussion of the relative magnitudes of drag forces). Flow over topography of 
moderate slope will separate. Flow separation leads to an enhancement of mixing 
processes in the lee of the topography and may affect the lee wave field. I n  the deep 
ocean this enhanced mixing may make a significant contribution to the overall 
vertical mixing in the region. 

The topology of the separated flow behind three-dimensional topography of 
moderate slope is very different for very small and very large values of the Rossby 

f Present address : James Rennell Centre for Ocean Circulation, Gamma House, Chilworth 
Research Centre, Southampton SO1 7KS, UK. 
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layer / ; Trailing 

Separation line vortices 

FIQURE 1.  Sketches of the separated flow behind a three-dimensional hill for (a) a non-rotating 
flow (perspective view) and ( b )  a rapidly rotating flow (plan view). 

number, R = U/fL (U is the flow speed, f the Coriolis parameter and L a typical 
horizontal lengthscale of the topography) (see figure 1 ) .  Here we use ‘moderate’ to 
imply maximum slopes of the topography to be < 1 .  Laboratory studies of flow 
separation of a non-rotating fluid over a three-dimensional hill have been carried out 
by Hunt & Snyder (1980) for both homogenous and stratified flows and by Brighton 
(1978) for strongly stratified flows. Numerical studies of homogeneous flow have been 
performed by Mason & Sykes (1979) and Mason & Morton (1987). The details of the 
wake flow are complex and not without controversy. There is a strong dependency 
on obstacle slope, boundary-layer depth and, as we report here, the characteristics 
of the boundary layer. The broad features of the downstream separation for a hill of 
moderate slope and moderate Reynolds number in a homogeneous non-rotating flow 
are sketched in figure 1 ( a )  (for a more detailed description see e.g. Mason & Morton 
1987). The separation is open in the sense that fluid arbitrarily close to the surface 
upstream of the hill can be displaced permanently from the surface. The downstream 
separation line ends in two spiral nodes from which eminate two counter-rotating 
trailing vortices, rotating in a sense t o  produce an upwash along the centreline. For 
a sufficiently high Reynolds number the flow over the top of the hill can develop a 
shear instability and the flow becomes unsteady. Upstream separation can also 
occur. Additional trailing vortices exist in the wake (Mason & Morton 1987). Which 
factors become dominant depends on the competing effects of the inertial turning 
and stretching of boundary layer and wake vorticity and the generation of vorticity 
by surface pressure gradients. 

Previous work on flow over topography in a rotating fluid has largely concentrated 
on flows with small values of the Rossby number. For an excellent review of 
laboratory studies on the subject see Baines & Davies (1980). For sufficiently small 
values of R such that S,  = L/DR % 1 (D  is the depth of the flow) the flow is 
constrained to be approximately two-dimensional. If the change to the flow due to 
the topography is strong enough the flow is constrained to move around the 
topography, there being a region of fluid trapped over the topography. The trapped 
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fluid is commonly referred to as a Taylor column (Taylor 1923; Hide 1961). The 
requirement for a Taylor column to form is that  S,  = h/DR $ 1 (h  is the height of the 
topography). 

The most detailed study of flow separation in a rapidly rotating fluid has been for 
a circular cylinder extending through the whole depth of the fluid (Boyer 1970; 
Boyer & Davies 1982 ; Boyer & Kmetz 1983). These studies show that rotation can 
suppress separation and that eddy shedding behind the obstacle begins at higher 
values of the Reynolds number than in the non-rotating case. The results of 
experimental studies with h < D are conflicting and the dependence of the flow on the 
flow parameters and start-up procedure uncertain. Ibbetson (1964) and Hide & 
Ibbetson (1966) observed a single eddy attached to the cylinder. In  the experiments 
of Vaziri & Boyer (1971) no eddies of any type were observed. In contrast Takematsu 
& Kita (1978) observed eddies which were shed first symmetrically and then 
alternately as the Reynolds number was increased (in their experiments increasing 
Reynolds number corresponds to  increasing Rossby number). Further experiments 
are required to clarify the situation. More recently Boyer et al. (1987) observed 
vortex shedding behind a cone at  R = 0.2, but no detailed parameter study was 
performed for the homogeneous case. 

Two interesting fluid dynamical questions arise. First, for a homogeneous fluid, 
how does the structure of the separated flow over a moderately steep isolated bell- 
shaped hill evolve from the non-rotating R + co regime (figure l a )  with two 
dominant trailing horizontal vortices to the rapidly rotating R + 0 regime (figure 1 b) 
which may include the shedding of vertical vortices ‘1 Secondly, for a given Reynolds 
number, will separation be completely suppressed a t  an intermediate value of the 
Rossby number ? The purpose of the experiments reported here was to investigate 
the near flow field over a bell-shaped hill and in particular the separation region when 
R = O( 1) .  The flow field is still fully three-dimensional, making a complete description 
of the field difficult to  obtain. The flow visualization techniques were chosen so that 
the topology of the separation, when it occurred, could be examined. The separated 
flow with rotation was found to  be fundamentally different from the non-rotating 
case. The parameter range of the experiments is limited so that the first question is 
not fully answered. The answer to the second question is yes. A criterion for the 
separation to be suppressed is sought for flows where the ratio of boundary-layer 
depth to hill height is small. The results should be added to the growing catalogue 
of flow over surface mounted obstacles. 

The flow field over the model hills, particularly when separating, is nonlinear. I n  
the problem of non-rotating stratified flow over two- and three-dimensional hills of 
low to moderate slope, linear theory has been shown to give a good estimate of when 
flow separation will be suppressed (Brighton 1977; Hunt & Snyder 1980). In that 
case i t  is the presence of internal gravity waves in the lee of the hill that  prevents 
separation. Here (in $4) we apply linear theory to  the homogeneous rotating problem 
in a similar manner. Such a system can support inertial waves (Stewartson & Cheng 
1979; Heikes & Maxworthy 1982), and indeed i t  is found that there is a significant 
inertial wave response around the critical Rossby number for flow separation. 
However, the theory shows that the non-wave response of the pressure field, as well 
as the inertial waves, changes the pressure gradient from positive to negative in the 
lee of the hill as R is decreased, thus inhibiting flow separation. 

Some remark is required on the application of the present results to geophysical 
flows. In  the atmosphere with a wind speed of 5 m s-l and taking f = s-l, a 
Rossby number of 0(1 )  corresponds to a hill of horizontal lengthscale of O(50 km). 
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In the deep ocean, a current speed of 5 cm s-’ corresponds to a hill of O(500 m). The 
maximum slopes of the model hills used in the experiments ranged from 0.36 to 0.72. 
Steep hills were used to  facilitate the detection of flow separation. The atmospheric 
analogue would therefore be a sizeable mountain. Slopes at the lower end of the range 
and on a 1 km horizontal lengthscale are not uncommon on the abyssal ocean floor. 
Also the depth of the bottom boundary layer of the ocean, O ( l 0  m), is small 
compared to the hill heights. The present study is limited to homogeneous flows and 
the boundary layer is laminar in almost all cases. We stress that  the results may not 
necessarily be applicable to the fully turbulent regime but suggest, as do other 
workers, that they should be useful in interpreting such flows. The final caveat is that 
in the deep ocean the internal Froude number based on the hill height F,, = U/Nh (N 
is the Brunt Vaisala frequency) is often less than 1. Stratification effects will 
therefore be important. These effects will be the subject of another paper (Smeed 
1992). 

2. Apparatus 
2. I .  Large rotating table 

A series of experiments was performed on the Coriolis turntable a t  the Institut de 
MBcanique, Grenoble. The characteristics of the table are described in Bonnefille & 
Chabert d’Hi8res (1967). The table has a diameter of 14 m and a maximum working 
rotation rate of 2 r.p.m. The sense of rotation, when viewed from above, is positive 
(anticlockwise). The rotation rate is maintained to a relative accuracy of The 
experiments were conducted in a water channel placed on the turntable. The working 
length of the channel is 10 m, the width 2 m and depth 1 m. The model hill was placed 
on a flat aluminium plate 2 m long, 1 m wide and 3 mm thick. The plate was then 
suspended from a carriage by four vertical struts and the carriage moved along the 
channel by an electric motor (see figure 2). The speed of the motor could be varied 
to give a translation speed of the hill along the channel in the working range 0.25 to 
5 cm s-l. The depth of water above the plate was varied from 10 cm to 40 cm. The 
upper surface of the water was free. As discussed by Mason (1975), effects due to  the 
parabolic shape of the upper surface of the water should be negligible. 

The centre of the hill was placed 60 cm from the leading edge of the plate. This 
ensured the Ekman layer on the plate was fully developed before encountering the 
hill. The condition for a fully developed Ekman layer is that  the Rossby number 
based on the development length is much less than 1 .  

The hill shape used in the experiments was Gaussian, i.e. 

h = h, exp [ - r 2 / L 2 ] ,  (2.1) 

where r is the distance from the centre of the hill. 
The horizontal lengthscale L = 12 cm. Two heights of hill were used, h, = 5 cm and 

10 cm, the maximum slopes being 0.36 and 0.72 respectively. The total radius of the 
model hills was 25 cm with the edges smoothed to provide no discontinuity in slope 
with the flat plate. 

For a given model hill the flow depends on three dimensionless parameters: the 
Rossby number R = U/fL,  the Ekman number EL = v/fL2 and the length-to-depth 
ratio LID, where U is the translation velocity of the hill and v the kinematic viscosity 
of the fluid. The ranges of these parameters in the experiments were 0.06 < R < 3, 
2 x and 0.3 < L / D  < 1.2. Other important flow parameters can < EL < 4 x 
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FIQURE 2. Sketch of the apparatus. 

Camera 

d 

Camera 
Fluorescent 

FIQURE 3. Sketch of ,he lighting and camera arrangement. 

be determined from combinations of the above three and the hill height. The 
Reynolds number Re = UL/v varied from 600 to 6000. We can define an additional 
Ekman number based on the flow depth ED = u/fD2. The Hide (1961) parameter 
8, = h,/DR varied from 0.02 to 8.3. Linear theory predicts that the flow will stagnate 
over a Gaussian hill with the subsequent formation of a Taylor column when 
8, > 3.1 (Huppert 1975). In the majority of the experiments 8, < 1. The Ekman 
layer depth 6 = ( 2 u / f ) i  varied from 0.25 cm to 0.56 cm. 

A number of flow visualization techniques were employed. The most successful in 
terms of detecting flow separation was the injection of dye into the flow from a 
number of ports on the hill surface. For sufficiently small flow rates of dye, the dye 
was injected into the Ekman layer with a very small relative speed. The dye could 
be introduced into the flow above the Ekman layer by increasing the flow rate of the 
dye. 

Surface stress fields were visualized by sprinkling potassium permanganate 
crystals over the surface of the hill. Since the stress fields for the flows considered are 
particularly simple this proved effective. 

In an attempt to visualize the flow away from the surface, elevated dye plumes 
were released upstream of the hill. The results were marred by instabilities in the 
wakes behind the dye tubes and small residual motions (less than 1 mm s-l) and will 
not be discussed here. The method employed for the small table was more successful 

The lighting arrangement is shown in figure 3. Two fluorescent tubes were 
suspended from the carriage. A camera was attached to the carriage above the hill 

(§W* 
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and 1.3 m above the plate to give a plan view. A second camera, stationary with 
respect to the water channel, was used to obtain side views. 

2.2. Small rotating table 
A second series of experiments was conducted in a water channel 2 m long, 30 cm 
wide and 30 cm deep. The channel was placed on a rotating table. The experimental 
set-up was almost identical to that on the large table. The hill shape used in these 
experiments was 

h = h, cos2[nr/4L] for r < 2L, 1 
= 0  for r 3 2L. 1 

A hill of height h, = 2 cm with L = 2.5 cm was used with a maximum slope of 0.63. 
The hill was mounted on a plate 55 cm in length with the centre of the hill 25 cm from 
the leading edge. A Plexiglas lid covered the surface. The height of the cover was 
adjusted to vary the depth of fluid above the plate, D, between 4 and 20 cm. To 
eliminate oscillatory motions within the channel it was necessary to align the axis of 
rotation precisely (to within 2 x lo-* rad) with the vertical. Care was taken to 
minimize convective motions arising from the difference between room temperature 
and that of the water in the channel. 

The sense of rotation, when viewed from above, is positive (anticlockwise). The 
maximum working rotation rate was 10 r.p.m. and the translation velocity, U ,  of the 
hill varied between 0.5 and 4 cm s-l. The Rossby number, R,  varied between 0.2 and 
6 and the Ekman number, EL,  between 1 . 6 ~  and 15 x lop3. The Reynolds 
number Re, was in the range 125-1000. 

The flow above the boundary was visualized by the injection of dye from a rake 
positioned upstream of the obstacle, which was displaced with the carriage. The 
electrolytic precipitation method was also used to produce lines or bands of tracer. 
The tracer is a fine white powder produced by applying an electrical potential 
between a solder wire and another electrode. This technique is described in greater 
detail by Honji, Tancda & Tatsuno (1980) and Boyer & Davies (1982). The speed a t  
which the wire can be displaced is limited by the critical Reynolds number at which 
its wake becomes unstable, and so in some experiments the solder wire was displaced 
ahead of the obstacle using a second carriage, which moved at a speed less than that 
of the obstacle. 

3. Results 
3.1. No rotation 

For reference the results from two experiments without rotation are presented. The 
first (figure 4 a )  was conducted by the first author in a recirculating flume a t  
Cambridge University (unpublished result). The flume is the same as that described 
by Brighton (1978) ; the flow in this instance being homogeneous and driven past the 
hill. In this picture the flow (and all others except figure 6b)  is from left to right. The 
hill shape is given by 

h = h,(l +r2/L2)-z,  (3.1) 

with L = 2 cm and h, = 2 cm. The flow is visualized by an upstream dye plume and 
also by injecting dye into the lee of the hill. The Reynolds number of the flow is 250 
and the depth of the boundary layer encountering the hill, estimated from boundary- 
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(4 

FIGURE 4. Non-rotating flow over a bell-shaped hill: (a) hill shape (3.1) with L = 2 cm, h, = 2 cm, 
Re = 250; ( b )  Gaussian hill with L = 12 cm, h, = 10 cm, Re = 1250. 

12-2 
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FIQURE 5.  Rotating flow over a Gaussian hill (h, = 10 cm, L = 12 cm) with R = 0.5 and 
D / L  = 2.5, EL = 2.8 x (U = 1.5 cm s-l, f = 0.25 rad s-*). 

layer theory, is 0.6 cm. The flow shows the broad features sketched in figure 1 ( a ) ,  
with the dye leaving the surface being entrained into two trailing vortices and a shear 
instability occurring in the flow over the crest of the hill. The second experiment was 
performed in the water channel on the Coriolis table, figure 4(b) .  The hill height is 
10 cm. The Reynolds number is 1250, and the boundary layer height 1.3 cm. The 
squares in the picture have side 20 cm. At this Reynolds number the flow in the lee 
of the hill is turbulent. From the still picture it is difficult to see, but again the flow 
was observed to exhibit the features described above. The flow separates just 
downstream of the crest and the separation line is clearly visible. Hunt & Synder 
(1980) and Mason & Morton (1987) give a more complete description of the separated 
flow behind a three-dimensional hill in a non-rotating fluid. 

3.2. Rotation 

3.2.1. Flow separation 
The first of the experiments with rotation is shown in figure 5 again on the Coriolis 

table with the 10 cm high hill. The sense of rotation in this, and all subsequent 
photographs, is positive. The Reynolds number Re = 1875 (which is slightly greater 
than in figure 4b). The Rossby number R = 0.48, D / L  = 2.5, and the Ekman number 
EL = 2.8 x lo-* with the Ekman-layer depth 6 = 0.28 cm. The flow is visualized by 
introducing dye into the Ekman layer from three ports upstream of the hill crest. The 
dye plumes show the deflection of the flow to the left within the Ekman layer. There 
is a convergence of the streamlines in the lee of the hill but no flow separation. The 
addition of rotation has completely suppressed the separation of the flow. On 
increasing the towing speed so that R = 0.8, the flow separates (figure 6a b ) .  To 
visualize the separated flow the dye plume on the centreline has been elevated 
slightly by increasing the dye flow rate so as to pass over the crest of the hill. The 
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FIGURE 6. Rotating flow over a Gaussian hill (h, = lOcm, L = 12cm) with R = 0.83, 
EL = 2.8 x and D / L  = 2.5 (U = 2.5 cm s-l, f =  0.25 red s-l) : (a) plan view, ( b )  side view (flow 
from right to left). 
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FIGURE 7 .  Rotating Bow over a Gaussian hill (h,  = 10 cm, L = 12 cm) with R = 1.3, 
E ,  = 5.6 x and D / L  = 2.5 (U = 2 cm s-l, f =  0.13 rad s-l). 
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FIGURE 8. Surface stress field, visualized using potassium permanganate crystals, for rotating flow 
over a Gaussian hill (h,  = 5 cm, L = 12 em) with R = 2.6, EL = 5.6 x and D / L  = 2.5 
(U  = 4 cm s-l, f = 0.13 rad d). 

dye plume flows down the lee side of the hill and is entrained into a trailing vortex. 
The dye plume on the right (looking downstream) marks the separation line. The 
technique of elevating the central dye plume was found to be the most effective 
method of detecting whether or not the flow was separating. The crossing of dye 
plumes is not sufficient to deduce flow separation because of the rotation with height 
of the flow within the Ekman layer. 

The dominant feature of the separated flow is a single trailing vortex, rotating 
clockwise looking downstream. Whenever the flow was observed to separate the 
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trailing vortex was present. The trailing vortex away from the hill on the occasion 
shown in figure 6 is in line with the mean flow and remains coherent until 
approximately 25 cm downstream of the crest of the hill, when it  becomes turbulent. 
The depth of the turbulent wake is equal to approximately half the hill heighth (in 
the non-rotating case the depth of the wake is equal to  the height of the hill). The core 
of the vortex is 7.5 cm to the left of the centreline. Increasing the towing speed causes 
the vortex to move further away from the centreline. At R = 1.7 the core of the 
vortex is almost at the edge of the hill and is 21 cm from the centreline. At this speed 
the vortex is turbulent from its first appearance. 

When the separation is weak or the Ekman layer deep the vortex interacts with 
the Ekman layer and its core is a t  an angle with the mean flow. Figure 7 shows the 
flow with R = 1.3. The Ekman layer depth is S = 0.39 cm. The vortex is now a t  an 
angle of 20" with the main flow. Downstream of the hill the vortex becomes turbulent 
and is brought more into line with the mean flow. 

A rough measure of the vorticity of the vortex can be obtained by assuming its 
core to be in solid-body rotation and its longitudinal velocity equal to that of the 
main flow. The turn-round time of the vortex can then be estimated and hence the 
vorticity. The vorticity in the vortices shown in figures 6 and 7 is then estimated to  
be 2.9 and 4.2 rad s-l respectively. This is an order of magnitude greater than the 
background vorticity f = 0.25 and f = 0.13 rad s-' in the two cases. It is, however, 
comparable to the vorticity in the boundary layer, measured by U/6 ,  which is 3.8 and 
5.3 rad s-l respectively. 

The surface stress distribution, visualized using potassium permanganate crystals, 
is shown in figure 8 for the 5 cm high hill in the large channel. The Rossby number 
is 1.3. This field shows a single separation line on the lee side of the hill. The 
orientation of the separation line becomes more inclined to the main flow as the flow 
velocity increases and as the hill height increases. There is neither an attachment line 
in the field nor any singular points. This is the simplest surface stress field possible 
for a separated flow. It is an example of 'local' or 'free vortex' separation (see Tobak 
& Peake 1982; Maskell 1955) and similar to that observed on an inclined spheroid 
(e.g. Han & Pate1 1979). A similar stress distribution was observed in one of the 
numerical integrations of Mason & Sykes (1979). 

Observations of the surface stress field in the small channel were difficult to  make 
owing to the thinness of the boundary layer. Some of the observations a t  the largest 
Rossby number gave an indication of singular points in the stress field (these 
experiments are marked on figure 10) but the results are inconclusive. 

In some cases secondary vortices were observed in the wake. These were of two 
kinds. The first existed within the boundary layer when the boundary-layer 
Reynolds number, Re, = US/v was close to  or greater than the critical value of 55. 
The surface stress fields show these secondary vortices to be associated with lines of 
surface convergence orientated 10" to the left of the downstream direction. They 
appear to  be due to  the Class B Ekman-layer instability described by Greenspan 
( 1968). 

When the Rossby number was generally 2 3 a second trailing vortex was 
observed. The vortex was a weak feature relative to the dominant vortex. It lay to  
the left (looking downstream) of the dominant vortex. The weakness of the vortex 
made it impossible to  determine its sense of rotation. 
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FIGURE 9. Dependence of flow separation on Rossby number and Ekman number. Closed symbols 
indicate no flow separation, open symbols indicate that the flow separates. Symbols marked ? 
indicate that the separation was intermittent : (a) Gaussian hill (ha = 5 cm, L = 12 cm) ; ( b )  Gaussian 
hill (ha = 10 cm, L = 12 cm). 

3.2.2. Criterion for flow separation 
The towing speed at which the flow first separates was sought for a given flow 

depth and rotation rate. In  practice, because of the dificulty in detecting a weak 
separation, the experimental conditions only allow the critical speed to be found to 
within approximately 10 YO (the uncertainty being greater for the slower towing 
speeds and faster rotation rates). 

Out of the four parameters R, h,/L,  EL and LID, the existence of separated flow 
was found to be primarily dependent on the Rossby number, R and the slope hJL. 
No discernable variation, within observational limits, of the criterion for flow 
separation was found with the depth of the flow for 0.8 < D / L  < 8 except for one case 
marked with triangles in figure 9, where the height of the hill was a substantial 
fraction of the flow depth. The dependence of flow separation on the Rossby number 
for the twy hills in the large channel is shown in figure 9 as a function of the Ekman 
number E l .  Here dL varies solely with the rotation rate and is a measure of the ratio 
of the Ekman-layer depth to the horizontal lengthscale of the hill, SIL. The flow 
depth varied between the limits given above and individual points may correspond 
to more than one experiment with different settings ofD. The critical Rossby number 
for flow separation, Rcrit, is found to be around 1 for the small hill ( h l L  = 0.4) and 
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FIGURE 10. Dependence of flow separation upon the Rossby number and Ekman number for 
experiments on the small rotating table (cos2 hill) for D / L  = 4.0. Crosses indicate no flow 
separation observed; 1, flow separation with one trailing vortex; 2, flow separation with two 
trailing vortices. Circles indicate experiments in which there waa a suggestion of singular points in 
the surface stresses. 
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0.7 for the large hill (h,/L = 0.8), with a slight increase in Rcrit with E i  (increasing 
boundary-layer depth) in both cases. The situation is complicated for the small-hill 
case by the fact that when the flow separates the boundary-layer Reynolds number 
Re, is between 40 and 60 and close to the critical value of 55 for boundary-layer 
instability (see Greenspan 1968). On a number of occasions (marked on figure 9 a )  the 
separation of the flow waa intermittent and on these occasions and at higher values 
of Re, coherent roll-type structures were observed in the boundary layer downstream 
of the hill crest, the flow being unsteady. 

The results for the small channel are shown in figure 10 for D / L  = 4 and 
h,/L = 0.8, extending the experimental results to higher EL. Again there is no 
appreciable change in the critical Rossby for flow separation (in this case 
approximately 1.5) with EL. Other flow depths give similar results. Those cases when 
secondary vortices were observed in the wake are marked in figure 10. These tend to 
occur when Re, is greater than 50 although there are cases when Re, > 50 and no 
secondary vortices were detected. 

3.2.3. Flow above the boundary layer 
These results are confined to the small rotating table. In  figure 11 streamlines 

originating upstream at a height x = 1.25h0 are illustrated for different values of the 
Rossby number (0.4, 1.1 and 2.8,  figures 11 a ,  11 b and 1 1  c respectively). In ( a )  and 
( b )  lateral oscillations of  wavelength approximately 27tU/f are evident downstream 
of the obstacle. 

The amplitude is greatest in ( a )  when the length of the hill, a, is close to 
the inertial wavelength 27tUlf (the equivalent Rossby number R z 0.6). In (c) the 
Rossby number is above the critical value required for separation. We see that 
the wake does not have any effect on the flow at this height. 

The flow at the height z = 0.2h0 ( FZ 3 boundary-layer depths above the plate) is 
shown in figure 12 for a Rossby number of 3.1. Fluid passing over the left-hand side 
of the obstacle is entrained into the wake which is turbulent in character. 
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(a) 

FIGURE 11. Streamlines originating upstream a t  a height z = 1.25h,, for flow over the cos2 
hill (small rotating table) and D / L  = 4.0. The squares on t,he plate have side 10 cm. (a )  R = 0.4, 
E , = 1 . 6 ~ 1 O - ~ ( U = 1 . 0 c r n s - ~ ,  f= l .Orads -L) .  ( b )  R = l . 1 ,  E , = 3 . 2 ~ 1 0 - ~  ( U =  1 .4cms-I ,  
f =  0.5 rad s-l, and (c)  R = 2.8, EL = 7.0 x (U = 1.6 cm s-l. f = 0.23 rad s-l). 
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FIGURE 12. Visualization of the flow above the boundary layer. The bands of tracer originated 
upstream at height z = 0.2h0. D / L  = 1.6, R = 3.1 and EL = 3.1 x 

In some cases (larger Rossby number) flow passing well to the left of the obstacle 
( y  = 3L) was entrained into the wake yet fluid passing over the right side of the 
obstacle (y = -L )  was unperturbed. 

4. Theory 
As discussed in the introduction we shall use a linear theory to elucidate the 

mechanism for suppression of flow separation. We shall make a thin-boundary-layer 
approximation, driving the boundary-layer equations by the pressure field given by 
an inviscid outer flow. The effect of viscosity on the outer-layer solution due to both 
the interaction with the boundary layer and viscous effects in the layer itself are 
discussed in Appendix A. 

A linear approximation to the equations of motion can be obtained by assuming 
that the height of the topography (h,) is small compared to the horizontal lengthscale 
(L). The perturbations to the undisturbed uniform flow may then be assumed to be 
O(s = ho/L). The flow variables are non-dimensionalized as follows (primes denote 
dimensional variables) : 

u’ = U,( U+€U), 

where Uo U is the undisturbed velocity and Uosu is the perturbation velocity. 
Neglecting terms of O(s2), the equations of motion for ( u , p )  are 

R( U - V U  +u.VU) -V = -p,+EL V 2 u ,  
R( U. VV + u - V V )  + u = -p ,  +EL V2v,  

L 
D u,+v,+-w, = 0, 
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where 

U = (U,  17, 0) and u = (u, v, w). 
The boundary conditions are no slip on the lower ( z  = h )  and upper ( z  = 1) 

boundaries (assuming that the upper boundary is a rigid surface). 
In  the experiments E took values between 0.4 and 0.8, which is not strictly small, 

and higher-order terms in E may be expected to  be important. However, the 
assumption of small E allows us to  obtain linear equations for O(1) Rossby number 
and the solutions illustrate a number of interesting features observed in the 
experiments. Heikes & Maxworthy (1982) discussed a model similar to that 
considered here and presented solutions for inviscid flow over two-dimensional 
ridges. We present here solutions for inviscid flow over three-dimensional 
topography. 

4.1. Inviscid outer-layer solutions 
Assuming that the effects of viscosity are negligible (the validity of this assumption 
is examined in Appendix A) then, following Heikes & Maxworthy (1982), solutions 
can be obtained by Fourier transformation of the equations of motion. Transformed 
variables will be denoted by hats, so that, for example, 

$(k, 1, Z )  = Jya dy s_b dzp(x, y, z )  e-i(kz+Lu). 

The inverse transformation is then 

The transformed version of (4.2) is (when U = (1,0,0)) 

ikRt2-G = -ik$, 

ikRv"+& = -il#, 

ikHZi, = -$z,  1 (4.3) 

ikd+ilv^+-&z R = 0, 
H 

where H = RD/L. The linearized inviscid boundary conditions of no flow normal to 
the upper and lower boundaries may be written 

& = 0  on z = 1 ,  Zi,=ikh on z = 0 ,  (4.4) 

where f i  is the transform of the lower surface ( z  = h(x, y)). The upper surface is 
assumed to be flat. In  the experiments there are lateral boundaries at a distance of 
4L (large rotating table) or 6L (small rotating table) from the centre of the hill, 
whereas the analysis assumes the flow to be unbounded in the horizontal plane with 
the solutions decaying far from the obstacle. 

A single equation for Zi, may be obtained from (4.3): 

Gzz = -m2G, (4.5) 

where 
(k2+12) H2k2 m2 = 

(1  -R2k2) ' (4.6) 
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and so, applying the boundary conditions (4.4), 

A sin [m(z- l)] 
sin m 

Zir = -ikh 

Other variables may be derived from equation (4.3), so that, for example, 

I( i(1-R2k2) m 
cos [m(z- l)]. 

= H(k2+12) sinm 

(4.7) 

There is an infinite series of singularities of $3 on the real k-axis. The position of these 
poles is k = f k, (n = 1,2,3. .  .) where 

k2, = - (4.9) 
1 

{ [H2P + R2m2] - [ (H2P +R2m2)2 + 4H2m2]-4}. 

Thus k, E (0, l /R).  

The singularity at k = I = 0 was dealt with by subtracting out the term 
Cauchy's residue theorem is used to calculate the contribution of these poles. 

An FFT is used to evaluate the remaining terms: 

where 

and 

(4.10) 

(4.11) 

(4.12) 

(4.13) 
- km3[R*H2k4 - H2( 2k2 + P)] 

(k2 + Z 2 ) 2  
mk = am/ak = 

Since the contour of integration passes just below the real axis, the contribution of 
the singularities is zero in x < 0, and in x > 0 it is 

N 

-2 $3, sin k, x. (4.14) 
n-1 

Note that as n +  m,  k, + 1/R and $3, = O(mP4) and so the series (4.14) converges. 
The transform p,, of $3,, satisfies 

(&+&)p,. = -k( l+R2&)h,  (4.15) 

for which an analytic solution can be found when h is given by (2.2). 
The 1-integration is then performed using an FFT. The solution thus obtained in 

fact corresponds to the flow past a row of obstacles along the y-axis with spacing Y 
(where 2n/Y is the interval between points in the 1-integration), and are thus only 
valid as an approximation to the flow over a single obstacle not too far downstream. 
Solutions for other variables were obtained in a similar manner. Further details are 
given in Appendix B. 

4.2. Boundary- layer equations 
Boundary layers are required to satisfy the no-slip conditions on the upper and lower 
surfaces. In this section we examine the flow in the lower boundary layer, and in 
particular we derive formulae for the bottom stresses on the surface of the 
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topography. We assume that the vertical scale is O(LEi) and that this is small 
compared to the radius of curvature of the lower boundary. It is necessary to take 
into account that the undisturbed flow is not uniform but varies with height, the 
velocity being described by the Ekman spiral, so that in the lower boundary layer 

U =  1-e-5cos5, V =  since-5. (4.16) 

Equation (4.2) becomes (neglecting terms O(EL))  

(4.17) 

J p5 = 0, 
u,+v,+w;l = 0, 

where 6 = E;; z and wn = E;: w (ED = EL L2/D2) .  The boundary conditions to be 
satisfied are 

I w " = u = v = O  on f = O ,  

u+uo, v + v o  as {+a, 
(4.18) 

where uo,vo are the solutions of the exterior flow on z = 0. Formally we work in a 
frame of reference in which is everywhere normal to the surface. However, because 
we consider only terms to the lowest order in e the surface may effectively be 
considered as flat. 

Fourier transforms may be applied to (4.17) to yield a fifth-order set of linear 
equations.*The transformed equations may be written in terms of the transformed 
vorticity 6 = ikfi - il4 and horizontal convergence A = iLZi + ilfi. 

-. I L i +  R i g (  k&.- lUc) + d = 0, 

Ld+Rizir"(kUc+l&.)-i = (k2 + l 2 ) i 0  = --lo+ ikRdo, 

$'+A = 0, 

L = -L+R[ikU+ilVl. ae 
The boundary conditions are 

J 
(4.19) 

(4.20) 

i0, lo and io are the transformed pressure, vorticity and convergence of the exterior 
solution on z = 0. 

Equations (4.19) are solved numerically: we chose to use a shooting method. 

4.2. I. Calculation of bottom stresses 
The values .& and jc0 of i5 and dc on 5 = 0 are calculated for different values of 

Rk and Rl. Since the boundary-layer variables are linearly proportional to the 
vorticity of the exterior solution on z = 0, it is necessary to calculate only the 
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FIGURE 13. Streamlines predicted by the theoretical calculations. The parameters are the same 
as for the experiments in figure 11. 

values gE and iz for the case to = 1. The values of the bottom stresses 4, and 9, 
can then be calculated for different solutions of the exterior flow from the relations 

(4.21) 

The inverse transformation is then inverted in a similar manner to that 
deyribed in Appendix B for the horizontal velocities in the exterior solution. 

6: and i t  are first evaluated on a mesh of values of Rk and RI; values a t  other 
points are then obtained by interpolation. Numerical instabilities limited the range 
of KR (K2 = k2 + Z 2 )  that can be examined and so it is necessary to impose a cutoff for 
K > 20/R when performing the inverse transformations. 

As kR + 1, the boundary-layer equations become singular and the boun4ary 
conditions cannot be satisfied. Thus when evaluating the stresses we replaced to as 
determined by the inviscid solution by to exp [ -E,(K2 +R2m2/H2)]. As well as being 
a mathematical convenience, this does, in a crude manner, take into account the 
viscous damping. 

4.3. Results 

The streamlines given by the theory at a height z = 1.25h0 above a cos2 hill with 
h,/L = 0.8 are shown in figure 13 for three values of R. These results are directly 
comparable to the observations shown in figure 11 (a-c). Both the amplitude and 
phase of the internal waves given by the theory compare well with the observations. 

The surface perturbation longitudinal velocity and pressure along the centreline of 
a Gaussian hill given by the theory are shown in figure 14 for varying R. The 
amplitude of the negative value of u in the lee of the hill actually increases as R goes 
from 5 to 0.5 as the lee wave response increases (it being considerably reduced by 
H = 0.2). The surface pressure field shows little influence of the lee waves in the far 
field. Over the hill we see a transition from a pressure minimum a t  the crest for large 
R to a pressure maximum as R + 0. The positive (unfavourable) pressure gradient 
dccrcases with R until a t  R = 0.5 it  is almost zero. Beyond this the gradient becomes 
negative (favourablc). Based on the ccntrclinc pressure gradicnt alone wc would 
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FIQURE 14. (a) Surface perturbation longitudinal velocity and ( b )  pressure predicted by linear 
theory scaled with hill slope along the centreline of a Gaussian hill for varying Rossby number and 
DIL = 1 .  

therefore predict flow separation to be inhibited for R around a value of 1 and totally 
suppressed for R < 0.5, in accordance with the observations. It should be noted that 
the flow is three-dimensional and not necessarily in the plane of the centreline. The 
pressure gradient should therefore be used only as a guide. In  particular, although 
the theory suggests an adverse pressure gradient upstream of the crest no upstream 
separation was observed in the experiments. 

The perturbation stress vectors 
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are shown in figure 15 for a Gaussian hill with R = 0.5 and 2 and LID = 1. At 
R = 0.5 the vectors show the general anticyclonic motion around the hill and only a 
very weak reversal of the vectors in the lee of the hill. Note also that there is only 
a weak signal from the lee waves that dominate the velocity field. At R = 2 there is 
a strong reversal and convergence of stress vectors in the lee of the hill. 

The skin friction lines (lines tangential to the surface stress) predicted by the linear 
theory are shown in figure 16 for R = 0.5 and 2 for a hill of slope h,/L = 0.5. Thc two 
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(4 

FIGURE 16. Skin friction lines predicted by linear thedry for a Gaussian hill. The circle has 
radius 2L. DIL = 1.0 ( a )  R = 0.5, ( b )  R = 2.0. 
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R 
FIGURE 17. Dependence of flow separation on hill slope and shape. Plot of R against maximum hill 
slope: hatched line, theory; symbols, observations. The symbol convention is as in figure 9. (a) 
Gaussian hill (experiments on large table) and ( b )  cos' hill (experiments on small table). 

cases are very different. With R = 2 many of the skin friction lines are seen to 
converge on the lee slope of the hill (looking remarkably similar to the observed 
surface stress field in figure 8) whereas at R = 0.5 no such convergence is seen. 
Convergence of skin friction lines is taken to imply flow separation (see e.g. Tobak 
& Peake 1982) and the field shown in figure 16(b)  would indicate a 'local' separation 
(Tobak & Peake 1982), there being no singularities in the stress field. It must be 
emphasized that linear theory has no place in predicting flow fields that are 
separating or close to separation. Here it is used to show the tendency of the flow to 
separate as external parameters are varied. 
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The Rossby number at which the linear theory predicts the flow to separate is 
shown in figure 17 for a Gaussian and a cos2 shaped hill as a function of hill slope. The 
criterion for separation based on linear theory is necessarily subjective (which is 
conveyed by the thickness of the line in the figure). Quantitively, the separation 
criterion was taken to be when the distance between surface stress lines decreased to  
less 1/10 or 1/20 of the upstream value. The theory suggests that for moderate hill 
slopes (1.5 2 e 2 0.3) the critical Rossby number varies slowly (0.5 5 Rcrit 5 l) ,  but 
as E is decreased further Rcrit increases more rapidly. The comparison with the 
Gaussian hill observations is surprisingly good; that for the cos2 hill not as good. 
However, the theory does correctly predict a greater value of Rcrit for the cos2 hill 
compared with a Gaussian hill with the same slope. One possible explanation for the 
difference in agreement between the experiments and the observations is that the 
relative importance of the nonlinear terms is dependent upon the shape of the hill as 
well as the hill slope (the blunter cross-section of the cos2 hill may be expected to 
cause a larger horizontal deflection of the oncoming flow). Further experiments and 
a nonlinear theory are required. 

The theory gives little variation in the separation criterion for D / L  > 1 ,  it being 
well within the uncertainty of the line in the figure. There is a modest increase in the 
value of r a t  which the lee pressure gradient is zero for D / L  < 1 ; for D / L  = 0.5 the 
pressure gradient is zero a t  R = 0.6. This is to be expected as the squashing of vertical 
vorticity (giving a positive pressure at  the crest) will become increasing more 
important as D decreases. 

5. Discussion 
Rotation has been found to  have a strong influence on the separation behind a 

three-dimensional hill. The topology of the separated flow is different to that of the 
non-rotating case (R --f C O )  with only one dominant trailing vortex and a much 
narrower and shallower turbulent wake. The surface stress distribution is particularly 
simple, with a single separation line with no singularities. This flow pattern was 
observed for flows with Rossby numbers up to R = 3. At this value of the Rossby 
number rotation will have little effect on the exterior flow (exterior meaning exterior 
to the boundary layer). The major difference between flows with R - 1 and R + co 
is the nature of the boundary layer. The flow in the rotational boundary layer turns 
with height and it is the structure of the boundary layer that affects the separation 
of the flow. Mason & Sykes (1979) have presented flow patterns for flow over a three- 
dimensional hill produced by a numerical model. Rotation is introduced into their 
model so that the undisturbed boundary layer does not grow with distance 
downstream. The Rossby number in their integrations is larger than 10 and usually 
about 100. They find similar flow patterns to those obtained here. However, as the 
Reynolds number or height of the hill is increased or the boundary-layer depth 
decreased the surface stress pattern becomes complex, with singular points in the 
surface stress field, and more like the non-rotating case. The maximum Reynolds 
number of their flows is 300. The maximum Reynolds number for the experiments 
reported here is 6000. No clearly identifiable singular points were observed in any of 
the flows. The value of the Rossby number at which the flow pattern will change is 
unclear. 

Even though we do not have a complete description of the flow it is interesting to 
speculate on the vorticity dynamics, and in particular on the existence of a single 
dominant trailing vortex, using the ideas put forward by Mason & Morton (1987). 
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Including rotational effects does not change their result that the net streamwise 
vorticity in any normal plain must be identically zero. There must be vorticity of the 
opposite sign (anticlockwise looking downstream) and of equal magnitude to the 
observed concentrated trailing vortex. No evidence was found for a second 
concentrated counter-rotating vortex of equal magnitude from careful observation of 
stray dye patches, upstream dye plumes or in the surface stress field. It is then 
reasonable to assert that this vorticity must be distributed over a relatively larger 
area. The mechanism for a single dominant trailing vortex must be different to that 
behind a skewed obstacle (see Mason & Morton 1987) where the flow field is 
asymmetric. In  the present case linear theory predicts the exterior flow for R > 2 to 
be symmetric about the centreline, though of course the flow in the boundary layer 
is asymmetric. Thus the rate of generation of streamwise vorticity due to the 
perturbation pressure forces (equal to ( l /p)  applay) or the inertial processing (turning 
and stretching of vortex lines by the flow) will be antisymmetric. The generation of 
transverse vorticity (( l / p )  applax) is however symmetric : negative upstream and 
positive downstream of the crest (pressure is a minimum a t  the crest). 

Preferential uplifting of the upwind boundary fluid a t  the separation line and 
associated turning within the boundary layer (clockwise looking from above) will 
produce a net negative streamwise vorticity (the sense observed in the experiments). 
It is worth noting also that the surface vortex lines (orthogonal to the skin friction 
lines, figure 16) that are turned clockwise in front of the separation line are bunched 
whilst those behind the line are turned anticlockwise and spread out. Lifting and 
turning of these vortex lines will again produce a net negative streamwise vorticity. 
Away from the separation line where processes are less concentrated, more diffuse 
positive streamwise vorticity must be produced. The subsequent development of the 
vorticity will be affected by the wake which is itself asymmetric, and to continue 
these arguments further requires a more detailed knowledge of the flow field. 

As the Rossby number of the flow is decreased the separation is suppressed a t  a 
value of R between 1.5 and 0.5 for hills with a moderate slope. As in the case of non- 
rotating stratified flow (Hunt & Snyder 1980) it is a change in the surface pressure 
field that is responsible for the suppression of separation over the hill. Linear theory 
has been found to  give a reasonable estimate for the criterion for flow separation a t  
moderate slopes. To continue further requires a more complete nonlinear theory. 

The experiments were undertaken a t  the Institut de MBcanique de Grenoble and 
we are very grateful for the assistance of the staff of the Institute, in particular 
S. Layat, J. P. Barbier-Neyret, D. Auchere and H. Didelle. Financial support from 
the Royal Society (European Science Exchange Programme Fellowship), IFREMER 
(contract 87.1430005) and the CNRS (INSU/TOAE and ATP Dynamiques des 
Fluides Geophysiques et Astrophysiques) is gratefully acknowledged. Some of the 
theoretical aspects were worked on while the first author was a visitor a t  Riser, 
Denmark ; thanks are due in particular to Dr N. 0. Jensen. 

Appendix A. The effects of viscosity 
The inviscid solution in which p is taken to be zero neglects two effects of viscosity : 

the dissipation in the interior of the flow ; and the boundary layers on the upper and 
lower surfaces which are required to satisfy the no-slip condition. 

In  a non-rotating fluid the depth of the boundary layer grows downstream. In  a 
rotating fluid the depth of the boundary layer is limited to be of the order of LEE. 
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However, the boundary layer still modifies the exterior flow via the vertical velocity 
a t  the top of the boundary layer. 

In the limit of R+O the boundary-layer flow approaches that of the Ekman 
boundary layer. In  this case the boundary conditions on the lower surface for the 
exterior flow is 

(A l a ,  b) 

where E, is the vorticity of the exterior flow on x = 0. We shall examine the effects 
of O(1) Rossby number and show that the modified boundary conditions result in 
only small changes to the flow in the vicinity of the obstacle but alter significantly 
the flow far from the obstacle. First though, we consider the effects of dissipation in 
the flow exterior to the boundary layer. If we proceed as in $4  but retain the viscous 
terms in the transformed equations and assume solutions of the form eimz, we obtain 
the following equation for m :  

w = Us V h  + EL wbQ, wbQ = &,, 

m2+ m2+-K2 ikR+E, K 2 + > m 2  = O .  ( ;: )[ ( i2 11' 
Assuming EL Q 1, m2 may be expanded as 

m2 =m:+E,m;+  .... 
There are three solutions to (A 2) .  The first has 

H2K2k2 
- (1-R2k2)' 

m2 - 

which is just the inviscid solution (4.6), and 

2H2K4k m: = -i 
R ( l  -R2k2)3' 

The two other solutions to (A 2)  have 

m i = O  and m;=-i(Rk+l).  (A 5% b) 

These correspond to exponentially growing or decaying solutions which are 
significant only close to the upper and lower boundaries. 

Equation (A 4b) indicates that the neglect of viscous dissipation is valid only when 

2EL K 2  
kR( 1 - k2R2)2 ' 

Thus we expect the inviscid solution to be reasonably accurate when E J R  Q 1,  as 
was the case in the experiments. It can be seen from (A 4b) that viscosity modifies 
the inviscid solution by displacing the singularities where m = nn from the real axis 
to the upper half-plane. The principal effect of dissipation is thus a downstream 
damping of the waves and the series (4.14) becomes 

where 

- 2 X I ; ,  sin ( K ,  x) e-@( 1 + O(EL)) ,  

An=ELl*l . 

n 

2mQmQk k - k ,  

Now we consider the effects of the boundary layer upon the exterior flow. When 
the Rossby number is order one, (A 1 a) still holds but the vertical velocity a t  the top 



Boundary-layer separation of rotating ji?ows over obstacles 369 

of the boundary layer, wbo is no longer given by (A 1 b). It was noted in $4 that, in 
transform space, the boundary-layer variables were linearly proportional to  the 
exterior solution on z = 0 ;  thus we can write 

Gbl = a(Rk, RZ) to. 

Gbl = -a(Rk, R1) El, 

(A 9a) 

(A 9b)  

Similarly, on the upper boundary 

where 6, is the inviscid solution for the vorticity on the upper boundary. Solving (4.5) 
with the boundary conditions (A 9) we find 

(A 10) 
A (1  - R2k2) m{ikR cos [m(z- l)] +EL ma sin [m(z- l)]} 

H (  k2 + 1') {ikR sin m + 2E\ ma cos m} 
$ = h  

Thus we see that the boundary layer affects the exterior solution in three ways. There 
is an O(EL) correction, but more significantly the poles on the real k-axis in the 
inviscid solution are displaced into the upper half-plane. And so the sum (4.14) 
becomes 

- 2 ~ $ , ( l +  o ( E ~ ) )  {cz(ikn-G) + ez(-ikn-Ai) I, (A 11)  
n 

where 

and Re [a] is the real part of the complex a. Note that a( - k, -Z) = a(k,  I )  but there 
is no simple relation between a( - k, 1 )  and a ( k ,  Z), and so the dissipation introduces 
an asymmetry which is not present in the inviscid solution. Note also that the 
e-folding lengthscale for the downstream damping of the waves is O(E,i), so that the 
damping due to  dissipation external to the boundary layer (e-folding lengthscale 
0(Ei1), is small compared to that due to boundary-layer dissipation. 

The third way in which the boundary layer modifies the exterior solution i? the far- 
field terms: the boundary layer will modify the solution for k < F,/R i.e. 
x > LR/E\. The far-field terms are determined by the solution a t  k, 1 +. 0. This is given 
bv 

(1 - k2R2) 
$oo = ikRi 

H(k2 + Z2) 2Ei a(0,O) ' 

Thus the far field decays more rapidly being dipolar, rather than monopolar as in the 
inviscid solution. In the experiments RIE: > 10 and so we expect the inviscid 
solutions to  be accurate in the domaine of interest (x < 5L). 

Appendix B. Evaluation of the horizontal velocity field 

and (4.8): 
Expressions for the transformed horizontal velocities may be derived from (4.3) 

A (Rk2-il) m 
i i = h  cos [m(z- l)], 

H (  k2 + 1') sin m 

~(Rkl+ik)  m 
v"=h cos [m(z- l)]. 

H(k2 + P) sin m 

For brevity we shall consider the transform of Zi only. The transform for 6, and also 
the transforms of the bottom stresses were evaluated in a very similar manner. 
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There are singularities in 4 a t  k = & k,(n = 1 , 2 , 3 . .  .), Rk = 1 and k = 1 = 0 (k, is 
defined in (4.9)). The latter is dealt with by subtracting out the term 

A (RE2-iZ) 
H(k2 + Z2) 

4, = h 

from (B l a ) .  The transform u, of 4, satisfies 

to which analytic solutions can be obtained when h is given by (2.2). The remaining 
terms can be expressed as 

where m2 sin m - I ) .  

The transform C(x, I ,  z )  -fi,(x, 1, z )  of 4 -4, is then recovered from the transform ii* 
of 4* using the convolution 

G - f i ,  = l w - G * ( s , Z ,  ds z )  sin [(x-s)/R]. R 

The transformation of C* is performed in two parts as for the pressure in $4: 

4* = 4; +4;, 

where 

and 
A HkZ(Rk2 - il) 

uf = h cos [nx(z- l ) ]  . 
( -  l),  nxmk I k - k ,  

The residue theorem can then be applied to give 

C; = { - ~ 2 u ~ s i n k n x ,  x > O ‘  

The convolution can then be performed analytically, so that 

0, x < o  =[ - C 2 4  R2[sin (k, 2) - k, R sin (x/R)]/( 1 -Rzk2), x > 0‘ (B 10) 

An FFT is used to transform 4, and a numerical convolution is then used to evaluate 
C,. The calculations are completed using an FFT to perform the 1-integration. 
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